

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

DETERMINATION REVIEW AND IMPLEMENTATION OF THE RESERVE IN THE OLIFANTS/LETABA SYSTEM

CAPACITY BUILDING: EWR DETERMINATION OLIFANTS-S5 (EWR1) B11J

10 JUNE 2016

Training Objectives

Subject	Specialist
Overview and discussion of main impacts and possible mitigation to determine REC	Retha Stassen
FRAI, MIRAI, IHI models and results	Dr Wynand Vlok
Hydrological preparation	Retha Stassen
Setup and running of Desktop Reserve Model (DRM) to determine EWR for REC (drought flows, maintenance flows and freshets/floods)	Retha Stassen
Hydraulics modelling and preparation	Trevor Pike
Interpretation of data with hydraulics information	Trevor Pike
Adjustments to DRM where necessary to define final EWR	Retha Stassen
Recommendations to water quality	Priya Moodley

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

Overview and discussion of main impacts and possible mitigation to determine REC

Upper Olifants

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Olifants-S5

5: Olifants (Old EWR1)

P

Olifants-EWR1 Comprehensive

© 2016 Google © 2016 AfriG S (Pty) Ltd. Imager© 2016 DigitalGlobe

2001

Imagery Date: 2/15/2016 | lat -25.760260° lon 29.313926° elev 1389 m eye alt 1.24 km 🔘

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Google earth

N

Olifants-S5 (EWR1): Site Photos

- Low flow
- Lack of habitat diversity
- > Poor *in situ* water quality
- Considerable algal growth (completely smothered)
- Invasive fish species

PES 2015: D

 Potential negative trajectory's need to be managed to prevent the degradation to a lower category

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

FRAI, MIRAI and IHI (Fish, Aquatic Macroinvertebrates and

Instream and Riparian Habitat Integrity)

MIRAI and FRAI

- Similar approach for the MIRAI and FRAI models
- > Will use the MIRAI as example
- Will indicate differences related to flow velocity classes

Why Determine Aquatic Macroinvertebrate Integrity

- Indicator of the PES
- Information on invertebrates and their habitats inform us about the ecological condition of a river.
- By setting the desired conditions for the invertebrate assemblage and associated habitat one can monitor and compare the present condition against the natural (reference) and desired condition.
- Can determine if the desired condition is achieved and if not, why not.
- Indices may be used in biodiversity assessment main objective is to use the biota and their habitat as indicators and warning systems to the ecological condition of the resource.

- Determine reference conditions
 - Historical information
 - Reference sites
 - Combination
- Data sources
 - Rivers database
 - Biobase
 - FWI Abany Museum

Link to areas

- > Hydrobiological regions
- Ecoregions
- Geozones

- Bedrock & Boulders
- Cobbles & Pebbles
- ➢ Gravel, Sand & Mud
- > Water column
- Vegetation
 - marginal
 - > aquatic

Telagonodidae (LOG X+1)

Data used to calculate the MIRAI

> Ideally:

- sufficient data on historical distribution patterns, abundance and FROC; excellent ecological data and knowledge on invertebrate taxa and their response to various habitat conditions
- ➤ Realistically:
 - very rarely sufficient data on historical distribution, and limited knowledge on the ecological requirements
- Practically:
 - Use available information and knowledge on the preferences and intolerances of invertebrate taxa in conjunction with environmental changes to calculate the MIRAI

Approach to and Interpretation of MIRAI Data and Results

- Spatial scale:
 - Some taxa may not be present along the total length of the reach.
 - Invertebrate taxa have particular habitat preferences and they may not be present at all habitats at a site within a defined reach.
- Temporal scale:
 - Seasonal variation
 - Inter annual variation
- Representative sampling:
 - Not all invertebrate taxa present are sampled and identified
 - Patchy distribution
- Interpret and assess habitat availability and condition in order to make conclusions on the integrity of the invertebrate assemblage.

Habitat Integrity

- The following concepts and definitions are relevant to river habitat integrity assessment:
- Biological integrity is the ability to support and maintain a balanced, integrated, adaptive community of organisms having a species composition, diversity and functional organization comparable to that of natural habitat of the region.
- Ecological integrity is the ability to support and maintain a balanced, integrated composition of physico-chemical and habitat characteristics, and biotic components on a temporal and spatial scale that is comparable to the natural characteristics of ecosystems of the region.
- Habitat integrity then refers to the maintenance of a balanced, integrated composition of physico-chemical and habitat characteristics on a temporal and spatial scale that is comparable to the characteristics of natural habitats of the region.

Habitat Integrity

- The following concepts and definitions are relevant to river habitat integrity assessment:
- The habitat integrity status of a river provides the template for a certain level of biotic integrity to be realized.
- Habitat integrity assessment is a precursor of the assessment of biotic integrity.
- Habitat and biotic integrity together constitutes ecological integrity.

Using the Photo Guide

- When assessing a river look at the instream and riparian zones.
 - Both need to be assessed according to various metrics.
- However, the first step is to identify the type of river
 e.g. is it largely a bedrock dominated, boulder cobble or alluvial system?
- Having identified this, use the appropriate sections in this guide and make a rating based on the photo examples.

What to Look For?

In-stream – hydrological modifications

- Base flows
- No flows
- Moderate floods
- Large floods
- Water clarity
- In-stream bed modifications
 - Bedrock
 - Boulder/cobble
 - Alluvial

INSTREAM 3. Bed Modification Sedimentation

Boulder/Cobble

INSTREAM 3. Bed Modification Sedimentation

Boulder/Cobble

Rating 2-3

INSTREAM

3. Bed Modification

Sedimentation

Boulder/Cobble

		Rating 4-5
Mkhondvo	Као	
Geomorph Zone: Lower foothills	Geomorph Zone: Mountain stream	
Extensive upstream sugar cane farming and subsistence agriculture as well as decreased sediment transport capacity are the cause for this rating. Boulder and cobble habitat occluded by sandy sediments. Considerable loss of cobble and boulder habitat.	Extensive gravel sediments filling pools and spaces between cobbles and boulders. Loss of boulder habitat and infilling of pools.	

What to look for?

hydrological

- In-stream modifications
 - Base flows
 - No flows
 - Moderate floods
 - Large floods
- > Water clarity
- In-stream bed modifications
 - Bedrock
 - Boulder/cobble
 - Alluvial
- > Organic/peat/wetlands

- Microphytes
- In-stream bank modifications – marginal, non marginal zonos
 - non-marginal zones
 - Bedrock
 - Boulder cobble
 - Alluvial
 - > Organic/peat/wetlands
- Connectivity modifications
 - Longitudinal
 - > lateral
- In-stream vegetation

INSTREAM 6. Instream Vegetation

Instream Vegetation

Rating is determined by the percentage coverage of water surface by macropytes 2-3 (30-60%) 0-1 (0-30%) 4-5 (60-90%)

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

PRACTICAL DEMONSTRATION

Olifants – S5 Workshop EWR Site

PES	EIS	REC	Comments / Motivation
D	Moderate	C/D	Absence of flow dependent sensitive fish species, lack of habitat diversity and poor water quality (e.g: <i>Labeobarbus marequensis, Labeo molybdinus, Labeo cylindricus and Petrocephalus wessels</i> i. <i>P. wesselsi</i> is habitat specific and thus absent from the site at the time of the survey. Alien invasive fish speciese namely <i>Micropterus salmoides</i> has an impact on the small fish species (e.g. Enteromius (Barubus) anoplus, E. eutaenia). The identified <i>Gambusia affinis</i> food source is eggs and thus further impacts on the indigenous fish populations by preying on their eggs. The presence of <i>Cyprinus carpio</i> further is competing for habitat betweem fish namely <i>Tilapia rendalli</i> and <i>Tilapia sparmanii</i>
			Velocity sensitive aquatic macroinvertebrates, lack of habitat diversity and poor water quality (e.g: Perlidae and Heptegeniidae). Porifera were not identified owing to the siltation on the rocks
			High nutrient loads owing to considerable algal growth
			It is recommended that RQOs set at this site in order to improve the nutrient loads to support the ecosystem

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

Hydrological preparation

Hydrological data

- >Available hydrology (WR2005, WR2012, other studies)
- Olifants catchment: data available from WRP 2009 study per management unit/ quaternary catchment
- Letaba catchment (Recon Strategy 2014)
- Shingwedzi catchment (Recon Strategy 2014)
- > Use natural flows to determine EWRs

Hydrological preparation

- Catchment area upstream of site
- Gauging weirs in vicinity of site without any major tributaries between site and weir
- > Availability of good quality hydrological data (daily observed, monthly simulated)

Graphs

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

DRM setup

Natural flows at EWR site (.prn)
 Site characteristics (single, monthly)
 Ecological Water Requirements (flows)

Flow Components to Consider

> Wet and dry season> Wettest and driest months

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

Setup up and Running of Desktop Reserve Model (DRM) PRACTICAL DEMONSTRATION

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

Hydraulics Modelling, Preparation and Interpretation of Hydraulics Data

Selecting a Cross Section

Select a CRITICAL cross section in consultation with the fish and invert specialists, which means:

- Critical habitat (generally a riffle)
- Constant slope
- Even water surface
- Straight flow path with no obstructions/diversions (to accurately model high and low flows)

Site Survey

Survey a detailed cross section including slope
 Capture photos, GPS coordinates, insert steel pegs & measure discharge

Measure Discharge

Hydraulic Modelling

- Based on Manning's Equation: Q=1/n R^{2/3} S^{1/2}
 - Q = Discharge (m³/s)
 - n = Roughness Coefficient
 - R = Hydraulic Radius (Area/Wetted Perimeter – calculated from cross section of river)
 - S = Slope (m/m)

Modelling - Stage Discharge

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Depth and Discharge at the Cross Section

WATER IS LIFE - SANITATION IS DIGNITY

Toll Free: 0800 200 200 www.dwa.gov.za

Modelling – Output Data

Maxdepth	Avdepth	Discharge	Width	Perim	AvVel	Vel98%	Dist_FishHT's(%)							Dist_InvertHT's(%)								
(m)	(m)	(m3/s)	(m)	(m)	(m/s)	(m/s)	SvS	SS	SD	FVS	FS	FI	FD	VSCS	SCS	FCS	VFCS	VSFS	SFS	FFS	VFFS	VEG
0.4	0.3	0.604	10.2	10.5	0.2	0.69	4	73	0	1	2	6	14	25	26	12	3	11	11	5	1	4
0.41	0.3	0.654	10.2	10.6	0.21	0.72	3	72	0	1	1	6	16	24	26	13	4	10	11	5	2	4
0.42	0.31	0.706	10.3	10.7	0.22	0.74	3	70	0	1	2	6	18	23	26	14	4	10	11	6	2	4
0.43	0.32	0.762	10.3	10.7	0.23	0.79	3	67	0	1	1	6	20	22	25	15	5	10	11	6	2	4
0.44	0.33	0.821	10.4	10.8	0.24	0.81	4	65	0	2	1	5	23	21	25	16	5	9	11	7	2	4
0.45	0.34	0.882	10.4	10.8	0.25	0.84	3	64	0	1	1	5	26	20	24	17	5	9	10	7	2	4
0.46	0.35	0.947	10.5	10.9	0.26	0.88	3	61	0	2	2	5	28	20	23	18	6	8	10	8	2	4
0.47	0.36	1.015	10.5	11	0.27	0.91	3	59	0	2	2	4	30	19	23	19	6	8	10	8	3	4
0.48	0.36	1.086	10.6	11	0.28	0.94	3	58	0	2	2	4	32	18	22	20	6	8	10	9	3	5
0.49	0.37	1.161	10.6	11.1	0.29	0.96	2	56	0	2	2	3	35	17	22	21	7	7	10	9	3	5
0.5	0.38	1.239	10.6	11.1	0.31	1.01	3	52	1	2	2	3	37	16	21	22	8	7	9	9	3	5
0.51	0.39	1.32	10.7	11.2	0.32	1.03	2	50	3	2	2	3	39	15	21	22	8	6	9	10	3	5
0.52	0.4	1.405	10.7	11.2	0.33	1.06	2	46	5	2	2	3	41	14	21	23	8	6	9	10	4	5
0.53	0.41	1.494	10.8	11.3	0.34	1.1	2	42	6	2	2	3	43	14	20	24	9	6	9	10	4	5
0.54	0.41	1.587	10.8	11.3	0.35	1.13	2	38	9	2	2	3	45	13	20	24	10	5	8	10	4	5
0.55	0.42	1.684	10.9	11.4	0.37	1.16	2	32	13	2	2	2	47	12	19	24	11	5	8	10	5	5
0.56	0.43	1.784	10.9	11.4	0.38	1.2	2	27	16	2	2	2	48	11	18	24	12	5	8	10	5	5
0.57	0.44	1.889	10.9	11.5	0.39	1.23	1	23	19	2	2	2	50	11	18	24	13	5	8	10	6	5
0.58	0.45	1.998	11	11.5	0.41	1.26	1	20	20	2	2	2	52	10	17	25	14	4	7	11	6	5
0.59	0.46	2.111	11	11.6	0.42	1.31	2	18	20	2	2	3	53	10	16	24	16	4	7	10	7	5
0.6	0.46	2.228	11.1	11.6	0.43	1.32	1	16	21	2	2	3	54	10	16	24	16	4	7	10	7	5
0.61	0.47	2.35	11.1	11.7	0.45	1.36	1	14	22	2	3	3	56	9	16	24	17	4	7	10	7	5

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

PRACTICAL DEMONSTRATION

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

Adjustments to DRM where Necessary to Define Final EWR

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

Recommendations to Water Quality

POTENTIAL PHYSICO-CHEMICAL MODIFICATION

Water Quality **Driver** of Ecological State

- Objective:
 - Whether the river water quality has changed from reference state due to anthropogenic changes.
 - If the water quality is currently changing, by how much, how fast and why?

47

POTENTIAL PHYSICO-CHEMICAL MODIFICATION

(1) WHETHER IT IS CHANGING: Determine PES

- Consider activities that indicate the potential that physicochemical conditions may have changed from the reference.
- Indicators: Presence of land cover/land use that implies the likelihood of a change of physico-chemical conditions away from the reference.
 - Algal growth and macrophytes may also be useful response indicators.
 - Activities such as mining, cultivation, irrigation (i.e. agricultural return flows), sewage works, urban areas, industries, etc. are useful road indicators.

EWR 1 – Water quality modification is generally present with a clearly detrimental impact on habitat quality, diversity, size and variability

49

EWR 1

Flow:

· Very low flow rate

Response Indicators:

- Algae is dense (completely smothered)
- Some silt present
- Water had a chemical smell
- · High salts

Activities

- Upstream cultivation
- Return flows from waste water treatment plants and inadequate treatment

Require physio-chemical data

Water Quality represented as:

- Results table
- PAI Model to produce the EC for water quality (PAI consideres degree to which water quality has changed from reference per component)
- The physico-chemical status is described in terms of its hazard what are the effects/consequences to the biotic components

Water Quality represented as:

- Results table
- PAI Model

RIVER	Marite F	River	Water Quality Monitoring Points						
WQSU	2, Marite	e River	RC	X3H011Q01, '79-'81, n=84					
EWR SITE	5		PES	X3H011Q01, '04-'07, n=129					
Confidence	assessment	Confidence in the a or metal data.	ssessment is moderate-h	igh, as little DO, temp., turbidity					
Water Qual	ity Constituent	s	Value (or summary statistic)	Category (Rating) / Comment					
	MgSO₄		-	TEACHA could not be used and					
Inorganic	Na₂SO₄		-	EC used as surrogate.					
ealte	MgCl ₂		-						
(mall)	CaCl ₂		-						
(ing/L)	NaCl		-						
	CaSO₄		-						
Nutrients	SRP		0.013	B (1)					
(mg/L)	TIN		0.28	B (1)					
	рН (5 ^m -95 ^m ре	rcentile)	7-7.9	A (0) as natural category was re-benchmarked					
	Temperature		-	Some temperature data from					
	Dissolved oxy	gen	-	Weeks et al. ('95). Site					
Dharland				(assumed constant release from					
variables				multi-level outlets. Dam completed 1999)					
	Turbidity (NTU	J)	Mean: 12 NTU	Due to constant release,					
		,	turbidity levels now low most of						
			NTU (Weeks et al.,	the time.					
			1995)						
	Electrical cond	ductivity (mS/m)	8.9	A (0)					
	Chl-a: periphy	ton	57.85	D (3) (n=1)					
Response	Chl-a: phytopl	ankton	1.57	A (0) (n=1)					
variable	Biotic commun	nity composition:	6.4						
variable	macroinverteb	rate (ASPT) score							
	Diatoms		SPI=19.4	A (0) (n=1)					
OVERALL	SITE CLASSIFI	CATION (from PAI)		B (84.44)					

METRIC	RATING	THRESHOLD	CONFIDENCE	DEFAULT	ADJUSTED	ADJUSTED	
		EXCEEDED?		WEIGHTS	RANKS	WEIGHTS	
pH	2.0	N	4.0	60.0		50.0	
Salts		NONE				60.0	
	4.0	SPECIFIED	4.0	50.0			
Nutrients		NONE				70.0	
	4.0	SPECIFIED	2.0	70.0			
Water Temperature		YES:THRESHOL				50.0	
	2.0	D > 3.9	2.0	60.0			
Water clarity		NONE				70.0	
	3.0	SPECIFIED	2.0	50.0			
Oxygen		YES:THRESHOL				65.0	
	4.0	D > 3.9	4.0	65.0			
Toxics	2.0	N	2.0	100.0		100.0	
CALCULATED PC MODIFICATION RATING	4.00	MEAN CONF \rightarrow	2.86				
FINAL PC MODIFICATION RATING	1.32						
P-C RATING BASED ON DE							
P-C CATEGORY %	P-C CATEGORY						
73.60	С						
P-C RATING BASED ON AD.							
P-C CATEGORY %	P-C CATEGORY						
40.22	D/E						

(2) IF THE WATER QUALITY IS CURRENTLY CHANGING, BY HOW MUCH, HOW FAST AND WHY?:

- Water Quality trends (stable, increasing, decreasing) (whether the causes remain unchanged – change in PES over time)
- Causes and sources of the water quality changes (flow or non flow related) - influences the mitigation measures (flow modification or source directed measures are necessary)
- Sensitivity to flow related water quality changes (Ecological importance)
- Special considerations

Water Quality Recommendations

- Qualitative statements expert judgement (expected water quality behaviour)
- Complex application of river water quality models (changes under different flows) (flow concentration modelling)

How the water quality conditions may change under selected flow scenarios?

Water Quality: EWR1 (Oliants-S5): Olifants River

- Improve water quality improvement in habitat quality (REC = D)
- Negative trajectory (trend), upstream impacts, non-flow and flow related (need flow modification and source controls)
- Water quality ecological specifications (clear and measurable specifications of ecological attributes) – preliminary Reserve
- Resource Quality Objectives : Water Quality EWR 1
 - Phosphate = $\leq 0.125 \text{ mg/l as P}$
 - Nitrate & Nitrite = $\leq 4.00 \text{ mg/l}$ as P
 - Total Ammonia = $\leq 0.10 \text{ mg/l N}$
 - Sulphates = $\leq 500 \text{ mg/l}$
 - Electrical Conductivity = $\leq 111 \text{ mS/m}$
- Include additional ecological specifications at the node outlet to the catchment

Department: Water and Sanitation REPUBLIC OF SOUTH AFRICA

Site discussion, recommendations and close-out for site